Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Repurposing lipoic acid changes electron flow in two important metabolic pathways of Escherichia coli.

Identifieur interne : 000922 ( Main/Exploration ); précédent : 000921; suivant : 000923

Repurposing lipoic acid changes electron flow in two important metabolic pathways of Escherichia coli.

Auteurs : Morgan Anne Feeney [États-Unis] ; Karthik Veeravalli ; Dana Boyd ; Stéphanie Gon ; Melinda Jo Faulkner ; George Georgiou ; Jonathan Beckwith

Source :

RBID : pubmed:21521794

Descripteurs français

English descriptors

Abstract

In bacteria, cysteines of cytoplasmic proteins, including the essential enzyme ribonucleotide reductase (RNR), are maintained in the reduced state by the thioredoxin and glutathione/glutaredoxin pathways. An Escherichia coli mutant lacking both glutathione reductase and thioredoxin reductase cannot grow because RNR is disulfide bonded and nonfunctional. Here we report that suppressor mutations in the lpdA gene, which encodes the oxidative enzyme lipoamide dehydrogenase required for tricarboxylic acid (TCA) cycle functioning, restore growth to this redox-defective mutant. The suppressor mutations reduce LpdA activity, causing the accumulation of dihydrolipoamide, the reduced protein-bound form of lipoic acid. Dihydrolipoamide can then provide electrons for the reactivation of RNR through reduction of glutaredoxins. Dihydrolipoamide is oxidized in the process, restoring function to the TCA cycle. Thus, two electron transfer pathways are rewired to meet both oxidative and reductive needs of the cell: dihydrolipoamide functionally replaces glutathione, and the glutaredoxins replace LpdA. Both lipoic acid and glutaredoxins act in the reverse manner from their normal cellular functions. Bioinformatic analysis suggests that such activities may also function in other bacteria.

DOI: 10.1073/pnas.1105429108
PubMed: 21521794
PubMed Central: PMC3093452


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Repurposing lipoic acid changes electron flow in two important metabolic pathways of Escherichia coli.</title>
<author>
<name sortKey="Feeney, Morgan Anne" sort="Feeney, Morgan Anne" uniqKey="Feeney M" first="Morgan Anne" last="Feeney">Morgan Anne Feeney</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Veeravalli, Karthik" sort="Veeravalli, Karthik" uniqKey="Veeravalli K" first="Karthik" last="Veeravalli">Karthik Veeravalli</name>
</author>
<author>
<name sortKey="Boyd, Dana" sort="Boyd, Dana" uniqKey="Boyd D" first="Dana" last="Boyd">Dana Boyd</name>
</author>
<author>
<name sortKey="Gon, Stephanie" sort="Gon, Stephanie" uniqKey="Gon S" first="Stéphanie" last="Gon">Stéphanie Gon</name>
</author>
<author>
<name sortKey="Faulkner, Melinda Jo" sort="Faulkner, Melinda Jo" uniqKey="Faulkner M" first="Melinda Jo" last="Faulkner">Melinda Jo Faulkner</name>
</author>
<author>
<name sortKey="Georgiou, George" sort="Georgiou, George" uniqKey="Georgiou G" first="George" last="Georgiou">George Georgiou</name>
</author>
<author>
<name sortKey="Beckwith, Jonathan" sort="Beckwith, Jonathan" uniqKey="Beckwith J" first="Jonathan" last="Beckwith">Jonathan Beckwith</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21521794</idno>
<idno type="pmid">21521794</idno>
<idno type="doi">10.1073/pnas.1105429108</idno>
<idno type="pmc">PMC3093452</idno>
<idno type="wicri:Area/Main/Corpus">000926</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000926</idno>
<idno type="wicri:Area/Main/Curation">000926</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000926</idno>
<idno type="wicri:Area/Main/Exploration">000926</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Repurposing lipoic acid changes electron flow in two important metabolic pathways of Escherichia coli.</title>
<author>
<name sortKey="Feeney, Morgan Anne" sort="Feeney, Morgan Anne" uniqKey="Feeney M" first="Morgan Anne" last="Feeney">Morgan Anne Feeney</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Veeravalli, Karthik" sort="Veeravalli, Karthik" uniqKey="Veeravalli K" first="Karthik" last="Veeravalli">Karthik Veeravalli</name>
</author>
<author>
<name sortKey="Boyd, Dana" sort="Boyd, Dana" uniqKey="Boyd D" first="Dana" last="Boyd">Dana Boyd</name>
</author>
<author>
<name sortKey="Gon, Stephanie" sort="Gon, Stephanie" uniqKey="Gon S" first="Stéphanie" last="Gon">Stéphanie Gon</name>
</author>
<author>
<name sortKey="Faulkner, Melinda Jo" sort="Faulkner, Melinda Jo" uniqKey="Faulkner M" first="Melinda Jo" last="Faulkner">Melinda Jo Faulkner</name>
</author>
<author>
<name sortKey="Georgiou, George" sort="Georgiou, George" uniqKey="Georgiou G" first="George" last="Georgiou">George Georgiou</name>
</author>
<author>
<name sortKey="Beckwith, Jonathan" sort="Beckwith, Jonathan" uniqKey="Beckwith J" first="Jonathan" last="Beckwith">Jonathan Beckwith</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Citric Acid Cycle (MeSH)</term>
<term>Cytoplasm (metabolism)</term>
<term>DNA Primers (genetics)</term>
<term>DNA, Bacterial (genetics)</term>
<term>Dihydrolipoamide Dehydrogenase (genetics)</term>
<term>Dihydrolipoamide Dehydrogenase (metabolism)</term>
<term>Electron Transport (MeSH)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli (growth & development)</term>
<term>Escherichia coli (metabolism)</term>
<term>Escherichia coli Proteins (genetics)</term>
<term>Escherichia coli Proteins (metabolism)</term>
<term>Genes, Bacterial (MeSH)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Glutathione Reductase (genetics)</term>
<term>Glutathione Reductase (metabolism)</term>
<term>Metabolic Networks and Pathways (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Ribonucleotide Reductases (genetics)</term>
<term>Ribonucleotide Reductases (metabolism)</term>
<term>Suppression, Genetic (MeSH)</term>
<term>Thioctic Acid (analogs & derivatives)</term>
<term>Thioctic Acid (metabolism)</term>
<term>Thioredoxin-Disulfide Reductase (genetics)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN bactérien (génétique)</term>
<term>Acide lipoïque (analogues et dérivés)</term>
<term>Acide lipoïque (métabolisme)</term>
<term>Amorces ADN (génétique)</term>
<term>Cycle citrique (MeSH)</term>
<term>Cytoplasme (métabolisme)</term>
<term>Dihydrolipoamide dehydrogenase (génétique)</term>
<term>Dihydrolipoamide dehydrogenase (métabolisme)</term>
<term>Escherichia coli (croissance et développement)</term>
<term>Escherichia coli (génétique)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Glutathione reductase (génétique)</term>
<term>Glutathione reductase (métabolisme)</term>
<term>Gènes bactériens (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines Escherichia coli (génétique)</term>
<term>Protéines Escherichia coli (métabolisme)</term>
<term>Ribonucleotide reductases (génétique)</term>
<term>Ribonucleotide reductases (métabolisme)</term>
<term>Suppression génétique (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Thioredoxin-disulfide reductase (génétique)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
<term>Transport d'électrons (MeSH)</term>
<term>Voies et réseaux métaboliques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Thioctic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Primers</term>
<term>DNA, Bacterial</term>
<term>Dihydrolipoamide Dehydrogenase</term>
<term>Escherichia coli Proteins</term>
<term>Glutathione Reductase</term>
<term>Ribonucleotide Reductases</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Acide lipoïque</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN bactérien</term>
<term>Amorces ADN</term>
<term>Dihydrolipoamide dehydrogenase</term>
<term>Escherichia coli</term>
<term>Glutathione reductase</term>
<term>Protéines Escherichia coli</term>
<term>Ribonucleotide reductases</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytoplasm</term>
<term>Dihydrolipoamide Dehydrogenase</term>
<term>Escherichia coli</term>
<term>Escherichia coli Proteins</term>
<term>Glutathione Reductase</term>
<term>Ribonucleotide Reductases</term>
<term>Thioctic Acid</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide lipoïque</term>
<term>Cytoplasme</term>
<term>Dihydrolipoamide dehydrogenase</term>
<term>Escherichia coli</term>
<term>Glutathione reductase</term>
<term>Protéines Escherichia coli</term>
<term>Ribonucleotide reductases</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Citric Acid Cycle</term>
<term>Electron Transport</term>
<term>Genes, Bacterial</term>
<term>Glutaredoxins</term>
<term>Metabolic Networks and Pathways</term>
<term>Models, Biological</term>
<term>Mutation</term>
<term>Oxidation-Reduction</term>
<term>Suppression, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cycle citrique</term>
<term>Glutarédoxines</term>
<term>Gènes bactériens</term>
<term>Modèles biologiques</term>
<term>Mutation</term>
<term>Oxydoréduction</term>
<term>Suppression génétique</term>
<term>Séquence nucléotidique</term>
<term>Transport d'électrons</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In bacteria, cysteines of cytoplasmic proteins, including the essential enzyme ribonucleotide reductase (RNR), are maintained in the reduced state by the thioredoxin and glutathione/glutaredoxin pathways. An Escherichia coli mutant lacking both glutathione reductase and thioredoxin reductase cannot grow because RNR is disulfide bonded and nonfunctional. Here we report that suppressor mutations in the lpdA gene, which encodes the oxidative enzyme lipoamide dehydrogenase required for tricarboxylic acid (TCA) cycle functioning, restore growth to this redox-defective mutant. The suppressor mutations reduce LpdA activity, causing the accumulation of dihydrolipoamide, the reduced protein-bound form of lipoic acid. Dihydrolipoamide can then provide electrons for the reactivation of RNR through reduction of glutaredoxins. Dihydrolipoamide is oxidized in the process, restoring function to the TCA cycle. Thus, two electron transfer pathways are rewired to meet both oxidative and reductive needs of the cell: dihydrolipoamide functionally replaces glutathione, and the glutaredoxins replace LpdA. Both lipoic acid and glutaredoxins act in the reverse manner from their normal cellular functions. Bioinformatic analysis suggests that such activities may also function in other bacteria.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21521794</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>07</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>108</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2011</Year>
<Month>May</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Repurposing lipoic acid changes electron flow in two important metabolic pathways of Escherichia coli.</ArticleTitle>
<Pagination>
<MedlinePgn>7991-6</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1105429108</ELocationID>
<Abstract>
<AbstractText>In bacteria, cysteines of cytoplasmic proteins, including the essential enzyme ribonucleotide reductase (RNR), are maintained in the reduced state by the thioredoxin and glutathione/glutaredoxin pathways. An Escherichia coli mutant lacking both glutathione reductase and thioredoxin reductase cannot grow because RNR is disulfide bonded and nonfunctional. Here we report that suppressor mutations in the lpdA gene, which encodes the oxidative enzyme lipoamide dehydrogenase required for tricarboxylic acid (TCA) cycle functioning, restore growth to this redox-defective mutant. The suppressor mutations reduce LpdA activity, causing the accumulation of dihydrolipoamide, the reduced protein-bound form of lipoic acid. Dihydrolipoamide can then provide electrons for the reactivation of RNR through reduction of glutaredoxins. Dihydrolipoamide is oxidized in the process, restoring function to the TCA cycle. Thus, two electron transfer pathways are rewired to meet both oxidative and reductive needs of the cell: dihydrolipoamide functionally replaces glutathione, and the glutaredoxins replace LpdA. Both lipoic acid and glutaredoxins act in the reverse manner from their normal cellular functions. Bioinformatic analysis suggests that such activities may also function in other bacteria.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Feeney</LastName>
<ForeName>Morgan Anne</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Veeravalli</LastName>
<ForeName>Karthik</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boyd</LastName>
<ForeName>Dana</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gon</LastName>
<ForeName>Stéphanie</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Faulkner</LastName>
<ForeName>Melinda Jo</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Georgiou</LastName>
<ForeName>George</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Beckwith</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM041883</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM055090</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM41883</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM55090</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>04</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3884-47-7</RegistryNumber>
<NameOfSubstance UI="C007409">dihydrolipoamide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>73Y7P0K73Y</RegistryNumber>
<NameOfSubstance UI="D008063">Thioctic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.17.4.-</RegistryNumber>
<NameOfSubstance UI="D012264">Ribonucleotide Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.4</RegistryNumber>
<NameOfSubstance UI="D008058">Dihydrolipoamide Dehydrogenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.7</RegistryNumber>
<NameOfSubstance UI="D005980">Glutathione Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002952" MajorTopicYN="N">Citric Acid Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008058" MajorTopicYN="N">Dihydrolipoamide Dehydrogenase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005798" MajorTopicYN="N">Genes, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005980" MajorTopicYN="N">Glutathione Reductase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012264" MajorTopicYN="N">Ribonucleotide Reductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013489" MajorTopicYN="N">Suppression, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008063" MajorTopicYN="N">Thioctic Acid</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>4</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>4</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21521794</ArticleId>
<ArticleId IdType="pii">1105429108</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1105429108</ArticleId>
<ArticleId IdType="pmc">PMC3093452</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2010 Jul 16;285(29):21943-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2010 Jun 8;6:378</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20531407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2001;55:21-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11544348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Feb 8;295(5557):1073-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11799204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Apr;44(2):431-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11972781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2002 Aug 2;295(5):1046-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12135599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 11;101(19):7439-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1972 Nov;130(1):8P</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4570348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1992 Aug;13(4):336-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1325638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1992 Dec;174(23):7716-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1332942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1994 Jun;176(12):3614-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8206840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Jan;177(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8002607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1995 Apr;21(4):303-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7567952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Apr;178(7):1990-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8606174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Oct 1;17(19):5543-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9755155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2005 Aug;33(Pt 4):851-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16042613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Sep;3(9):e309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16111437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Mar 8;25(5):1137-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16482221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Oct 5;282(40):29521-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17690105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Jan 18;29(1):36-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18206967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2008 Apr;281(2):147-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18312361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 May 6;105(18):6735-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18456836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1170-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 Sep;5(9):625-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19578333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2009 Oct;5(10):1214-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19756311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13703-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570136</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Beckwith, Jonathan" sort="Beckwith, Jonathan" uniqKey="Beckwith J" first="Jonathan" last="Beckwith">Jonathan Beckwith</name>
<name sortKey="Boyd, Dana" sort="Boyd, Dana" uniqKey="Boyd D" first="Dana" last="Boyd">Dana Boyd</name>
<name sortKey="Faulkner, Melinda Jo" sort="Faulkner, Melinda Jo" uniqKey="Faulkner M" first="Melinda Jo" last="Faulkner">Melinda Jo Faulkner</name>
<name sortKey="Georgiou, George" sort="Georgiou, George" uniqKey="Georgiou G" first="George" last="Georgiou">George Georgiou</name>
<name sortKey="Gon, Stephanie" sort="Gon, Stephanie" uniqKey="Gon S" first="Stéphanie" last="Gon">Stéphanie Gon</name>
<name sortKey="Veeravalli, Karthik" sort="Veeravalli, Karthik" uniqKey="Veeravalli K" first="Karthik" last="Veeravalli">Karthik Veeravalli</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Feeney, Morgan Anne" sort="Feeney, Morgan Anne" uniqKey="Feeney M" first="Morgan Anne" last="Feeney">Morgan Anne Feeney</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000922 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000922 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21521794
   |texte=   Repurposing lipoic acid changes electron flow in two important metabolic pathways of Escherichia coli.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21521794" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020